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• Introduction
– Tokamaks

• Magneto-Hydro-Dynamics
– Equilibrium
– MHD Instabilities

• Non-linear MHD simulations
– XTOR : double tearing modes in Tore Supra
– JOREK : Edge Localised Modes

• Open questions/Conclusion
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toroidal field coils for
main magnetic field

plasma is secondary ring 
of a transformer 

induces toroidal current

total helical field

winding number ~ 1/q
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• Toroidal field coils (18):
– B=5.3T (plasma centre)

• Poloidal field coils
– plasma shaping, X-point

• Central Solenoid
– Induction of the plasma current 

(15MA)

PF1
PF2

PF3

PF4

PF5

PF6

CS

I=15MA

Plasma Major/Minor Radius 6.2m / 2.0m
Plasma Volume 840m3

Plasma Current 15.0MA
Fusion Power 500MW
Burn Flat Top >400s
Power Amplification >10
Density 1020 m-3

Pressure 2.8x105 Pa
<b>=2m0<P>/B2 2.5%
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• Plasma model as a conducting fluid in a magnetic field:

– (mass)Density conservation:

– Momentum conservation:

– Energy conservation:

– Faraday:

– Ohm’s Law:
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• Normalisation momentum equation:

• Ohms Law:
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• Static equilibrium:

• Force balance between pressure gradient 
and the Lorentz force:

• Poloidal flux y :

• Grad-Shafranov equation describes 
axisymmetric equilibrium:
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• Equilibria can be reconstructed from 
measurements of magnetic field 
outside the plasma.

– minimisation measurements with 
values from numerical solution 

– Internal measurements of pressure 
and magnetic field can also be used

See J. Blum, tuesday

ITER equilibrium reconstruction 
using EFIT (W. Zwingmann)
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• Driving forces for ideal (no dissipation) MHD instabilities:
– Parallel current density
– Pressure gradient 

Bending of magnetic field lines 
Alfven waves

Compression magnetic field
fast waves

Compression of pressure,
sound (slow) waves

Pressure gradient 
Curvature(K)

Ballooning instability

Parallel current drive
kink instability
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• Simplest model for current driven kink modes is a 

current carrying wire in a parallel magnetic field
– unstable to helical deformation

• Ideal MHD kink mode deforms surface
– driven by parallel current 
– requires a rational q surface just outside plasma
– Magnetic topology remains the same in ideal MHD

external kink

instability in JET tokamak

Bz

I

F0 zI B kl r=

Cartoon of n=1/m=3 
kink mode
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• Instability drive: pressure gradient ( p) against curvature (K)
– Unstable on outside of torus, stabilising on inside

ballooning mode localised on low-field (outer-side) of torus

– radially localised (in high pressure gradient region) to avoid stabilising 
bending of magnetic field lines

– High toroidal mode numbers most unstable

n=10 
ballooning mode
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• Finite resistivity allows a change of topology of magnetic configuration

– Tearing modes, driven by current gradients, lead to the formation of 
magnetic islands on rational q (=m/n) surfaces

•Local flattening of current and pressure profile

m=2 islands

– “Neoclassical” tearing modes are 
driven by a local pressure 
gradient

•absence of the pressure gradient 
(bootstrap current) inside 
(existing island) increases island 
size

•requires a large enough initial 
perturbation, f.e. by another 
MHD mode

•can lead to pressure limit below 
ideal MHD stability limits
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• Linear ideal MHD model :
– generalised eigenvalue problem

• Linear MHD codes give:
– MHD stability limits
– MHD mode structures
– MHD spectrum of waves

• Codes are well established:
– MISHKA, CASTOR, MARS, 

PEST, …

• Routinely used to analyse 
experiments

0110

01

0110

;)(

0;)(

;)(

BBBBB

vvv

<<+=

==

<<+=

ti

ti

ti

et

et

ppepptp

w

w

w

)(

)(

)(
1

011

10011

01

10
0

110

BvB

vv

BB

BBv

´´Ñ=

·Ñ-Ñ·-=

´´Ñ+

´´Ñ+- Ñ=

w
gw

m
wr

ppp

p

w=Ax Bx



Guido Huysmans Numerical Flow Models for Controlled Fusion, Porquerolles 16-20/4/2007

� " � � � � � � 
 � � � � � � � � � � � � �&� � � � � � � � � �
• peaked pressure profiles in ‘advanced scenarios’ can lead to sudden end 

of the plasma : disruption
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• 2D view of the plasma motion due to the MHD instability
just before the disruption :

2.6 R[m] 3.6

1.0

0.5

Z[m]

-0.5

Tomographic reconstruction 
of X-ray emission

JET SXR cameras (1998)



Guido Huysmans Numerical Flow Models for Controlled Fusion, Porquerolles 16-20/4/2007

%�� � � � � � 	 
 � ' � � � � � � � 

• The stability limit and the plasma motion in the advanced scenarios are 

well described by the ideal linear MHD model:
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• MHD instabilities impose the ultimate limit on the plasma 
parameters:

– the plasma current is limited 
by external kink modes (qedge 3)

– the plasma pressure is limited by
ballooning modes and 
pressure driven kink modes

beta limit:

– (neo-classical tearing modes)

ITER Physic Basis, Nuclear Fusion, Vol. 39, No. 12 (1999)
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• Difficulties MHD simulations :
– Large variation of time scales:

•Fast waves : frequency varies from order 1 Alfvén times to infinity

•Instabilities are relatively slow 10-3 a 10-2 Alfvén times.

•Equilibrium evolution 106 -108  Alfvén times

– Large variation in spatial scales:
•MHD Instabilities are quasi singular
•High (magnetic) Reynolds numbers S~108 - 1010

•Anisotropy of energy transport parallel and perpendicular 
to magnetic field (~1010)

– The exact geometry of the magnetic field is essential.
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• Non-linear MHD code in toroidal tokamak geometry developed by H. Lutjens and 

J.F. Luciani (CPhT Ecole Polytechnique Paris)
– Equations : viscous/resistive MHD + heat conduction

– Applications : internal kink modes, neo-classical tearing modes, double 
tearing modes (Tore Supra, JET) etc.
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Split time stepping scheme:

– Ideal MHD part of motion and resistive part of Faraday: semi-implicit

– Linear ideal MHD fully implicit
– Predictor-corrector for other than motion ideal advances

– Scheme for ideal MHD part strongly damps fast modes
designed to solve shear Alfvén modes.

– Thermal transport: preconditioned fully implicit (conjugate gradients)

Boundary Conditions:
– Free slip, infinitely conducting wall

Discretisation:
– radially : Finite Differences 

– poloidal and toroidal angles q,F : Fourier Series
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• Semi-implicit schema (ideal MHD part):
– Predictor

– Corrector

Damping of (unwanted) high frequency (fast) modes, small damping
for low-frequency modes 

) � � � � � � � � � � � � � � � � * � � �

L0 : ideal MHD
operator

Stable for
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• Steady state, long pulse discharges
– driven by Lower-Hybrid waves leads to hollow current profiles (and 

non-monotonic q-profiles
– Onset of ‘MHD regime’

temperature perturbations due to 
MHD modes
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• The measured temperature perturbation indicates a double island 

structure with two local flattened regions
– double tearing mode due to 2 rational surfaces (q=2)

q

Hard-X
75 keV
(a.u.)
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• XTOR simulations find same 2 behaviours as in experiment
– but simulations are too pessimistic (too unstable)

S=5x106 , n=1/S, c(perp)=2x10-5 ,c(parallel)=2x10+3

resolution : Nradial=200(300), Mpoloidal=48(64), Ntoroidal=16(32)
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• XTOR : two islands exchange position causing a complete 
flattening of the q-profile (i.e current profile)
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• MHD Instabilities, localised at the plasma boundary, cause large energy losses 

(in JET ~1 MJ) in a very short time (200 ms)
– cause for concern in ITER (damage to the first wall)
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• ELMs observed with a fast camera in MAST (A.Kirk, UKAEA):

– Filaments detaching form plasma at high speed (~several km/s)
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• Improved confinement regime (H-mode) appears spontaneously when 

heating is large enough : formation of edge pedestal with large pressure 
gradient

� unstable to MHD instability (Ballooning modes)

normalised radius
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• Edge Localised Modes (ELMs) can cause large energy 
losses, possibly leading to damage to the first wall.

• Relevant linear MHD Stability limits are well known:
– Ballooning modes driven by edge pressure gradient
– External kink modes driven by edge current

• Main open question : What determines the size of an ELM?
– How far can one cross the MHD stability boundary?

• What is the noise level for the ideal MHD mode in stable plasma?

– What determines the final state after the ELM?
• Is there a correlation with the width of the linear eigenmode? 

– What is the relaxation mechanism? 
• Why not a saturated instability but a discrete event?

� Non-linear MHD simulations in full geometry including open 
and closed field lines, X-point and separatrix.
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• Non-linear MHD code JOREK under 
development at CEA for the simulation
of ELMs

– magnetic geometry with X-point
– finite elements aligned on magnetic surfaces

•refinable finite elements

– reduced MHD model
•‘vacuum’ modelled as cold, low density plasma

– fully implicit time evolution
– parallelisation using MPI
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•Reduced MHD model in toroidal geometry

– fixed large toroidal magnetic field
– removes fast waves, easier on the numerics
– similar to reduction Navier-Stokes to potential flow

– Good for physics studies, not for detailed comparison with experiment
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• Fully implicit time evolution to allow large time steps

• Linearised Crank Nicholson scheme:
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• Large sparse system of equation solved using parallel direct sparse 
matrix libraries (PASTIX, MUMPS, WSMP)
- Hybrid direct/indirect methods (PASTIX) under study (P. Ramet et al.)
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• Evolution of n=6 
ballooning mode

– Formation of multiple 
filaments expulsed from 
plasma

– Speed ~1 km/s

– Sheared from main 
plasma by induced n=0 
flow

– Filaments are cold, 
without magnetic structure

density flow



Guido Huysmans Numerical Flow Models for Controlled Fusion, Porquerolles 16-20/4/2007

&� � � # � 
 � , � � � � � � � � �
• Refinable bi-cubic Finite Elements (Bezier FE)

– adaptive grid refinement (O. Czarny)

• Adaptation of PastiX sparse matrix library 
– direct/indirect parallel sparse matrix solver 

(P. Ramet, P. Henon, O. Coulaud)

• Optimisation of time-stepping algorithm in JOREK 
– stabilised FEM, stable residual distribution

schemes (R. Abgrall, B. � �� � � � � )

• Full MHD model
– Open field line boundary conditions

(M. Becoulet, G. Huysmans)

project in french ANR program on 
‘Intensive Computing and Simulation’ (ANR-CIS)

– Collaboration CEA Cadarache - �� 	 �
 � � 
� � � � � � � 	 � � �� 
 � �University of 
Bordeaux
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• Numerical schemes
– High, i.e. realistic, (magnetic) Reynolds numbers 
– Resolution of ‘boundary’ layers
– Long time integration 

• Non-linear evolution of MHD modes
– Simulation of complete ELM cycle (different ELM types)
– Simulation of sawtooth cycle
– Excitation of neo-classical tearing modes

• MHD + background turbulence
– Interaction fluid turbulence with MHD instabilities

• Fast particle interaction with MHD modes
– ITER
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• The linear MHD model is one of the simplest and most 
successful models in tokamak physics

– describes the operational limits of tokamaks (pressure and current)
– Local pressure gradient and current density limits
– Frequencies of (global) Alfvén waves

• Non-linear MHD is moving from theoretical studies to 
comparison theory-experiment

– However, still many open basic physics questions
• Crash of fast MHD instabilities (ELMs, sawteeth)
• Trigger of neoclassical tearing modes 
• Interaction fast particles and MHD modes
• Extensions to the MHD model

• Progress in numerical methods is needed
– realistic Reynold numbers
– extended MHD models


